Iron and Virulence in Francisella tularensis
نویسنده
چکیده
Francisella tularensis, the causative agent of tularemia, is a Gram-negative bacterium that infects a variety of cell types including macrophages, and propagates with great efficiency in the cytoplasm. Iron, essential for key enzymatic and redox reactions, is among the nutrients required to support this pathogenic lifestyle and the bacterium relies on specialized mechanisms to acquire iron within the host environment. Two distinct pathways for iron acquisition are encoded by the F. tularensis genome- a siderophore-dependent ferric iron uptake system and a ferrous iron transport system. Genes of the Fur-regulated fslABCDEF operon direct the production and transport of the siderophore rhizoferrin. Siderophore biosynthesis involves enzymes FslA and FslC, while export across the inner membrane is mediated by FslB. Uptake of the rhizoferrin- ferric iron complex is effected by the siderophore receptor FslE in the outer membrane in a TonB-independent process, and FslD is responsible for uptake across the inner membrane. Ferrous iron uptake relies largely on high affinity transport by FupA in the outer membrane, while the Fur-regulated FeoB protein mediates transport across the inner membrane. FslE and FupA are paralogous proteins, sharing sequence similarity and possibly sharing structural features as well. This review summarizes current knowledge of iron acquisition in this organism and the critical role of these uptake systems in bacterial pathogenicity.
منابع مشابه
Iron content differs between Francisella tularensis subspecies tularensis and subspecies holarctica strains and correlates to their susceptibility to H(2)O(2)-induced killing.
Francisella tularensis, the causative agent of tularemia, is one of the most infectious bacterial pathogens known and is classified as a category A select agent and a facultative intracellular bacterium. Why F. tularensis subsp. tularensis causes a more severe form of tularemia than F. tularensis subsp. holarctica does is not known. In this study, we have identified prominent phenotypic differe...
متن کاملProteomics analysis of the Francisella tularensis LVS response to iron restriction: induction of the F. tularensis pathogenicity island proteins IglABC.
Francisella tularensis is a highly virulent, facultative intracellular pathogen that causes tularemia in humans and animals. Although it is one of the most infectious bacterial pathogens, little is known about its virulence mechanisms. In this study, the response of F. tularensis live vaccine strain to iron depletion, which simulates the environment within the host, was investigated. In order t...
متن کاملThe Ability to Acquire Iron Is Inversely Related to Virulence and the Protective Efficacy of Francisella tularensis Live Vaccine Strain
Citation: Fletcher JR, Crane DD, Wehrly TD, Martens CA, Bosio CM and Jones BD (2018) The Ability to Acquire Iron Is Inversely Related to Virulence and the Protective Efficacy of Francisella tularensis Live Vaccine Strain. Front. Microbiol. 9:607. doi: 10.3389/fmicb.2018.00607 The Ability to Acquire Iron Is Inversely Related to Virulence and the Protective Efficacy of Francisella tularensis Live...
متن کاملSuperoxide dismutase B gene (sodB)-deficient mutants of Francisella tularensis demonstrate hypersensitivity to oxidative stress and attenuated virulence.
A Francisella tularensis live vaccine strain mutant (sodB(Ft)) with reduced Fe-superoxide dismutase gene expression was generated and found to exhibit decreased sodB activity and increased sensitivity to redox cycling compounds compared to wild-type bacteria. The sodB(Ft) mutant also was significantly attenuated for virulence in mice. Thus, this study has identified sodB as an important F. tula...
متن کاملTwo parallel pathways for ferric and ferrous iron acquisition support growth and virulence of the intracellular pathogen Francisella tularensis Schu S4
Iron acquisition mechanisms in Francisella tularensis, the causative agent of tularemia, include the Francisella siderophore locus (fsl) siderophore operon and a ferrous iron-transport system comprising outer-membrane protein FupA and inner-membrane transporter FeoB. To characterize these mechanisms and to identify any additional iron uptake systems in the virulent subspecies tularensis, single...
متن کاملThe Reduced Genome of the Francisella tularensis Live Vaccine Strain (LVS) Encodes Two Iron Acquisition Systems Essential for Optimal Growth and Virulence
Bacterial pathogens require multiple iron-specific acquisition systems for survival within the iron-limiting environment of the host. Francisella tularensis is a virulent intracellular pathogen that can replicate in multiple cell-types. To study the interrelationship of iron acquisition capability and virulence potential of this organism, we generated single and double deletion mutants within t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017